Вход в систему не произведен
 Войти /  Регистрация

Новости - подробно

10.01.2020 22:44 Давность: 218 days

Насыщение не мешает воде покидать Марс

Категория: Система Марса, Технологии, В России

Марс, возможно, теряет воду быстрее, чем предполагалось. Наблюдения, проведённые с помощью российского спектрометра АЦС на борту марсианского аппарата TGO проекта «ЭкзоМарс», показали, что сезонное увеличение водяного пара в верхней атмосферы планеты может быть гораздо большим, чем предполагалось раньше, и он может находиться в перенасыщенном состоянии даже в присутствии облаков.

Статья с результатами работы опубликована в журнале Science 9 января 2020 г.

Вода на современном Марсе сосредоточена, в основном, в его полярных шапках. Если распределить её по всей поверхности планеты, то глубина водного слоя составит не более 30 м, и это менее 10 процентов того количества воды, которое, как считается, было раньше, во времена «теплого и влажного» раннего Марса.

Воды в атмосфере планеты ещё меньше: если осадить её, то толщина слоя составит всего 10 микрон. Но именно через атмосферу Марс постоянно «теряет» воду: молекулы воды распадаются на атомарные кислород и водород, которые поднимаются до достаточно больших высот и уже оттуда улетают в межпланетное пространство.

Эта общая картина, однако, до сих пор не разработана в деталях. Один из нерешённых вопросов состоит в том, насколько быстро молекула воды может пройти весь путь: от попадания в атмосферу до превращения в водород и ухода из атмосферы. Это во многом зависит от того, как высоко могут подниматься молекулы воды. Соответственно, исключительно важными становятся наблюдения за водяным паром, его концентрацией и распределением по высоте.

Анна Фёдорова, заведующая лабораторией отдела физики планет ИКИ РАН и первый автор статьи, опубликованной в Science 9 января 2020 г., и её коллеги из ИКИ и научных организаций Европы исследовали этот вопрос с помощью данных спектрометрического комплекса АЦС на марсианском аппарате Trace Gas Orbiter (TGO) проекта «ЭкзоМарс».

АЦС успешно работает на орбите у Марса с весны 2018 года. В его состав входят три инфракрасных спектрометра, чувствительных к малым составляющим марсианской атмосферы. С апреля 2018 по март 2019 (это примерно половина марсианского года) АЦС провёл порядка 1700 тысяч наблюдений в так называемом «режиме солнечных затмений». В этом режиме спектрометры комплекса АЦС смотрят на Солнце через атмосферу Марса, и регистрируют не просто наличие тех или иных химических соединений, но ещё и их концентрацию в зависимости от высоты. Таким образом были получены данные о концентрации молекул воды, а также о температуре и давлении атмосферы и количестве пыли в ней.

«Необходимо понять, каким образом воды может попадать в верхние слои атмосферы, — говорит Анна Фёдорова. — Один из важных механизмов, блокирующий воду в нижней атмосфере, как и на Земле, — облака. Они появляются, когда парциальное давление водяного пара (это давление, которое имел бы пар, если бы заполнял весь объём, занятый смесью газов) превышает некоторое пороговое значение. Этот порог насыщения зависит от температуры. Облака, по идее, играют роль «холодной ловушки» для молекул воды, так как не дают им подниматься выше. Но если комбинация температуры и давления таковы, что порог насыщения повышается, то часть водяных молекул может избежать этой «ловушки». При этом очень важно, насколько много пыли в атмосфере, так как её частицы служат ядрами конденсации при формировании облаков».

За время наблюдений Марс проходил перигелий орбиты, то есть находился около её ближайшей к Солнцу точки. В это время в его южном полушарии лето сменило весну и произошли две пылевые бури, в том числе одна глобальная, накрывшая всю планету.

По данным АЦС, в это время в обоих полушариях коэффициент перемешивания водяного пара (water vapor mixing ratio или VMR), который измеряется в количестве частиц на миллион, оказался достаточно высоким. Более влажным всё-таки оказалось южное полушарие: показатель VMR превысил 50 частиц на миллион на высотах от 50 до 100 км, тогда как в северном полушарии он, скорее, уменьшался со временем.

Кроме этого, в южном полушарии наблюдались периодические повышения концентрации водяного пара до высоты 100 км, а в северном полушарии это произошло только во время глобальной пылевой бури. Не обнаружилось и корреляции с локальным повышением температуры. Таким образом, транспорт водяного пара, видимо, связан с более крупномасштабным механизмом атмосферной циркуляции, который затрагивает сразу все полушарие.

Но важнейшим результатом работы стали наблюдения за водяным паром в состоянии перенасыщения.

Термин «перенасыщенное состояние» означает, что количество водяного пара, которое находится в определенном объеме атмосферных газов, больше значения, максимального для данной температуры. Ранее предполагалось, что в атмосфере Марса в случае перенасыщения «лишняя» вода мгновенно кристаллизуется. Как следствие, выше некоторой высоты должно происходить резкое падение парциального давления водяного пара в марсианской атмосферы (или, проще, содержание водяного пара должно резко падать).

В 2011 г. исследователи из лаборатории LATMOS и ИКИ РАН, в число которых входила Анна Фёдорова и ее соавторы, используя данные аппарата «Марс-Экспресс», показали, что водяной пар может существовать в состоянии перенасыщения на высотах около 30 км летом в северном полушарии (период прохождения Марсом афелия) в узком диапазоне широт. Теперь АЦС обнаружил значительные области перенасыщения летом в южном полушарии.

По новым данным, водяной пар в перенасыщенном состоянии существует в обоих полушариях на высотах от 5 до 30 км, при этом корреляции с наличием или отсутствием облаков не наблюдалось.

В южном полушарии, в частности, наблюдался некоторый «слой», содержащий водяной пар в перенасыщенном состоянии, на высотах от 15 до 40 км. Во время региональной пылевой бури эта особенность исчезла, но после неё восстановилась и снова постепенно исчезла ко времени весеннего равноденствия.

Ещё выше, от 70 до 80 км, «перенасыщенный» водяным паром слой атмосферы существовал, по-видимому, все время, в том числе при наличии облаков. Это обстоятельство косвенно подтверждает наличие некоторого эффективного механизма, который переносит воду в верхние слои атмосферы. На высоте 50–60 км также время от времени наблюдались перенасыщенные водяным паром «участки» атмосферы и, как и на более низких высотах, одновременно с облаками.